고객 상담 센터 1599-8517 월~금 09:00 ~ 18:00
점심시간 12:00 ~ 13:00
주말 및 공휴일 휴무
HOME > 강좌LIST > 전체강좌

강의실

[HD]쉽게 배우는 텍스트 마이닝(Text Mining) Part.2 영어를 위한 NLTK 2
담당강사 김동준 수강기간 30일
강의구성 총20강좌    강의형식 동영상
즐겨찾기
참고사항 등록후 확인이 가능합니다.
목차 제목 플레이어 선택 수강여부
1 파이썬 코드로 n-gram 구현하기
2 nltk stopwords를 활용한 불용어 제거하기(1)
3 nltk stopwords를 활용한 불용어 제거하기(2)
4 nltk stopwords를 활용한 불용어 제거하기(3) - 주의사항 및 여러가지 참고사항
5 한국어 불용어 제거하기
6 Stemming(스테밍)이란 무엇이고 왜 필요한가
7 Stemmer를 사용한 어간 추출
8 PorterStemmer vs LancasterStemmer 어간 추출 비교
9 주어진 텍스트로 부터 Stemming 처리하기 - PorterStemmer 사용
10 주어진 텍스트로 부터 Stemming 처리하기 - PorterStemmer 사용 - 코드 실습
11 주어진 텍스트로 부터 Stemming 처리하기 - LancasterStemmer 사용 - 코드 실습
12 lemmatization이란 무엇이고 단어의 기본형 또는 원형복원을 하는 방법
13 WordNetLemmatizer를 사용하여 단어의 기본형(표제어, 원형복원) 추출하기
14 WordNetLemmatizer에서 제대로 처리하지 못하는 단어들
15 품사 정보를 제공하여 기본형(표제어) 추출
16 정규식 토크나이저(RegexpTokenizer)를 활용한 토큰화 처리(1)
17 정규식 토크나이저(RegexpTokenizer)를 활용한 토큰화 처리(2)
18 정규식 토크나이저(RegexpTokenizer)를 활용한 토큰화 처리(3)
19 정규식 토크나이저(RegexpTokenizer)를 활용한 토큰화 처리(4)
20 구두점 제거 및 텍스트에서 비문자 빼고 문자만 출력하기
아이티고 로딩중.